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1  |  INTRODUC TION

Ecosystems are complex, involving tens to thousands of species that 
interact with each other and the environment in nonlinear ways and 
on multiple time- scales ranging from seconds to millennia. As a con-
sequence, it is not surprising that models of ecosystem dynamics 
are challenged in their ability to make valid predictions. Critically, al-
though we wish to achieve a comprehensive and holistic understand-
ing of ecosystem dynamics, nearly all systems of interest are sparely 

observed, meaning we typically have data on a relatively small frac-
tion of species' abundance, traits, environmental drivers and other 
variables that might contribute to ubiquitous fluctuations in ecosys-
tem state. This ‘partially observed system’ problem is not unique to 
ecology; incomplete observations impede advances in domains as 
disparate as genetics, neurobiology, climate science and finance.

There are three classes of approaches for addressing the partially 
observed system dilemma. The first, and arguably most common 
approach is simply to ignore it: to use simplified parametric models 
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Abstract
1. Ecosystems are complex and sparsely observed making inference and prediction 

challenging.
2. Empirical dynamic modelling (EDM) circumvents the need for a parametric 

model and complete observations of all system variables. Classical univariate ap-
proaches, which require time- series observations of only a single focal variable, 
can produce verifiable out- of- sample forecasts; however, they can sometimes 
require long time series that may be difficult to obtain. More importantly, classi-
cal approaches limit the depth of mechanistic understanding that can be gained 
and the generalizability of forecasts to non- analogue futures.

3. We review the main ideas of EDM and more recent extensions that expand their 
capabilities for improving forecasts and understanding mechanism.

4. Algorithms are now available that allow for missing data, unequal sampling in-
tervals and combining short time series, which increase the number of datasets 
that can be used. Recent extensions of EDM to multivariate time series substan-
tially expand the range of applications and mechanistic questions that can be 
addressed, including detecting causal coupling, tracking changing interactions 
in real time, leveraging short time series from information shared in coupled 
variables, modelling dynamically changing stability, scenario exploration, and 
management applications involving optimal control.
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convergent cross- mapping, early warnings, empirical dynamic modelling, gaussian process, 
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that focus only on the observed state variables. Examples include 
the single- species models widely used in wildlife management and 
conservation (FAO, 2020; IUCN, 2020). This approach sidesteps the 
problem, essentially treating unobserved variables as process noise. 
While there are circumstances (e.g. time- scale separation) where 
the ‘process noise approximation’ can be made rigorous, doing so 
requires strict assumptions about the dynamics that are difficult to 
justify. Most importantly, by ignoring unobserved variables, this ex-
pedient approach foregoes potential gains in predictability and can 
produce an oversimplified conception of the system dynamics.

The second class of approaches is to use a well- vetted model for 
the system to infer missing state variables and parameters. This tactic 
requires a system model that is a good approximation of the underly-
ing dynamics (i.e. hidden Markov or state- space models, see e.g. De 
Valpine, 2002; Holmes et al., 2012; Millar & Meyer, 2000). Although 
these models often make compelling in- sample predictions, if the ap-
proximation is poor, this approach will generate unreliable estimates of 
missing state variables and parameters, and fall short in terms of out- 
of- sample prediction (e.g. Deyle, May, et al., 2016; Judd et al., 2008).

In contrast to the prior two, the third class of approaches does not 
assume a particular functional form, but instead uses time- series data 
in a nonparametric fashion and implicitly accounts for unobserved 
state variables. These data- centric methods of ‘attractor reconstruc-
tion’ have appeared in the literature under various monikers including 
‘nonlinear forecasting’, ‘(time) delay embedding’, ‘state- space recon-
struction’, and most recently, ‘empirical dynamic modelling’ (EDM). 
Delay embedding was first used in ecology by Schaffer (1984) as a 
step in constructing a unimodal map, but applications of the method 
for forecasting and exploration of dimensionality were first introduced 
to ecology in the 1990s by Sugihara and May (1990).

Since the 1990s, there have been many conceptual and statisti-
cal advances in EDM that expand both the range of questions that 
can be addressed and the datasets that can be analysed. Our review 
is focused on these methodological developments, primarily in the 
ecological literature. Before reviewing these, we briefly summarize 
the ideas behind EDM and its implementation (for more details, see 
Munch et al. (2020) and Chang et al. (2017)). We close with a discus-
sion of some important areas for future development.

2  |  OVERVIE W OF EDM

EDM views time series as ‘observation functions’ of a dynamical sys-
tem (a brief video summary can be found here, http://tinyu rl.com/
EDM- intro). In its simplest form, the dynamical system can be thought 
of as a homogeneous (i.e. time- invariant) nonlinear system of N state 
variables, say x(t) =

{
x1(t), … , xN(t)

}
, whose dynamics are governed 

by dx
dt

= f(x), and the observed time series y is some function of the 
system state, that is, y(t) = P [x(t)]. In ecological applications, an obser-
vation function is often thought of as a state variable, say y(t) = x1(t)

, but this is not required. In general, observation functions can be any 
variable that records displacement of the system as it evolves (e.g. total 
abundance of several age classes or species in a functional group).

Natural systems are typically thought to be dissipative, mean-
ing they collapse from a potentially very high N- dimensional space 
to a much lower dimensional ‘attractor’ with dimension d, to which 
trajectories converge. The attractor can be a point (d = 0), a closed 
loop as in a stable limit cycle (d = 1), a torus (d = 2) or a more com-
plex shape with a fractal dimension (e.g. a ‘strange attractor’). The 
embedding dimension, E, corresponds to the number of variables 
(or coordinate axes) required to resolve the attractor. The Whitney 
embedding theorem states that E ≥ 2d is sufficient. Assuming the 
dynamics are reasonably smooth (most ecological models fall in this 
category), trajectories that start from nearby points on the attractor 
tend to remain close together, at least for a period of time. EDM ex-
ploits this fact when making forecasts based on the fates of near- by 
analogues. Say we are starting from a point, x(t), and wish to pre-
dict the state h steps into the future, x(t + h). Smoothness implies 
that we can find a collection of historical points close to x(t), say 
x
(
t1
)
, … , x

(
tn
)
, and use their future states to make a prediction. The 

simplest way to do so would be to use the average of their future 
states, x̂(t + h) = 1∕n

∑n

i=1
x
�
tj + h

�
. Repeating this process over a 

wide range of initial states, x(t), provides multiple estimates of the 
mapping from x(t) to x(t + h). Interpolating among them results in 
an empirically derived discrete time model for the system, that is, 
x̂(t + h) = F̃[x(t)].

The second, possibly more important, property of dynamical sys-
tems exploited in EDM is described in Takens' (1981) delay embed-
ding theorem, which shows how any one system variable can contain 
information about the others. Takens' theorem shows ‘generically’ that 
there is a one- to- one correspondence between the attractor in the 
original coordinate system, defined by the collection of vectors x(t) = {
x1(t), … , xN(t)

}
, and the collection of ‘delay coordinate vectors’ de-

fined by 
{
xj(t), xj(t − �), … xj(t − E�)

}
, where τ is the time delay and 

E is the embedding dimension. This is profoundly important because 
if any one state variable contains information about the others, lags 
of that variable can act as a substitute for (and indirectly account for 
the dynamics of) unobserved state variables. More generally, Takens' 
says that delay coordinates can be constructed from any observation 
function of the system, that is, y(t) = {y(t), y(t − �), … , y(t − E�)}. The 
original proof for smooth manifolds has been generalized to stochastic 
and fractal attractors (Stark et al., 2003). The one- to- one correspon-
dence between x(t) and y(t), provides a justification for constructing 
discrete time models of the form ŷ(t + h) = G[y(t)]. In most applica-
tions of EDM, doing so involves two steps: choosing E and τ, then 
approximating G from data using some flexible approach. We consider 
these steps in more detail below.

It is important to note that Takens' theorem was originally re-
stricted to time- invariant, deterministic systems, but was later ex-
tended to forced and stochastic systems (Stark, 1999; Stark et al., 
2003). In a stochastic system, a rigorous delay- embedding map is 
given by xt = f

(
xt−� , … , xt−E� , �t−� , … , �t−E�

)
. However, the ap-

proximation f
(
xt−� , … , xt−E�

)
+ �t is implicit in most ecological ap-

plications. Simulations show that EDM successfully captures the 
conditional mean for an age- structured stochastic population model 
(Munch et al., 2020).

http://tinyurl.com/EDM-intro
http://tinyurl.com/EDM-intro
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2.1  |  Selecting embedding parameters

A variety of methods for selecting τ and E have been proposed 
and are well described elsewhere (Chang et al., 2017; Kantz & 
Schreiber, 2003; Li et al., 2021). Since the dynamics in the original 
state space are assumed to be smooth, nearby trajectories should 
not cross. The objective in selecting τ and E is to find values such 
that trajectories in delay coordinate space also do not cross. This is 
referred to as ‘unfolding’ or ‘embedding’ the attractor. Intuitively, 
any point in delay coordinates where trajectories cross is a point 
where prediction based on the behaviour of nearby points will be 
poor. This can happen, for instance, if E is too small and trajec-
tories that are not actually nearby in a higher- dimensional space 
(and head in different directions) appear to be close together in 
a lower- dimensional space. This is known as the problem of ‘false 
neighbours’ (Kennel et al., 1992) and is addressed in forecasting 
(Sugihara & May, 1990).

Early approaches to delay coordinate embedding (Chan & 
Tong, 2001; Sauer et al., 1991) suggested selecting τ based on 
minimizing time- series autocorrelation or mutual information, 
then choosing E based on nearest neighbour forecasting (Sugihara 
& May, 1990) or an equivalent false nearest neighbours algorithm 
(Abarbanel & Kennel, 1993). One straightforward approach is 
to evaluate prediction accuracy over a grid of E and τ and sim-
ply choose the pair that produces the most accurate forecasts τ 
time steps ahead (Sugihara, 1994; Sugihara & May, 1990), pref-
erentially choosing smaller values in the case of statically indis-
tinguishable results. In most ecological applications to date, τ 
is usually fixed to 1 since the sampling intervals are often fairly 
coarse (e.g. monthly or annual surveys), making E the only free 
parameter, which is noteworthy in terms of simplicity. However, 
as more high- frequency ecological data become available, esti-
mates of τ will provide meaningful information on the relevant 
time- scale in the system.

Heuristically, when the time series exhibits some near- 
periodic behaviour, the product Eτ should be close to the recur-
rence time (i.e. average time it takes for the system to return to 
a nearby state, see e.g. Kantz & Schreiber, 2003). However, many 
systems of interest involve dynamics that play out on disparate 
time- scales. When multiple time- scales are present, the use of a 
constant τ can be less desirable, as different values correspond 
to modelling dynamics on different time- scales of interest (Judd 
& Mees, 1998). Intuitively, if τ is based on the short time- scale, 
many coordinates (i.e. large E) might be needed. Conversely, if τ is 
based solely on the long time- scale, the high- frequency dynamics 
will be treated as noise. Selecting a single τ based on prediction 
accuracy assumes embedding relative to the dominant time- scale. 
Constructing delay vectors with several different values of τ can 
ameliorate this difficulty (Judd & Mees, 1998) and is justified by 
the multivariate embedding theorem (Deyle & Sugihara, 2011). 
Alternatively, the time- scale problem can be circumvented using 
an ensemble of randomly generated delay vectors (see e.g. Tajima 
et al., 2015).

2.2  |  Fitting the model

Given a collection of delay coordinate vectors, the next step is to 
approximate the delay coordinate map. Many different function ap-
proximation schemes have been applied to EDM, each with strengths 
and weaknesses, including locally constant models (Simplex; 
Sugihara & May, 1990), locally linear models (S- map; Sugihara, 1994), 
Gaussian processes (GPs; Munch et al., 2017), polynomial ‘response 
surface’ models (Turchin & Taylor, 1992), neural network mod-
els (Nychka et al., 1992) and generalized additive models (Benincà 
et al., 2015). Bhat and Munch (2022) show that the algebra of delay 
embedding leads naturally to a representation as a recurrent neural 
network, opening the way for partially specified models. It is worth 
noting that, while some methods are clearly too stiff to be broadly 
applicable (e.g. polynomial models), the ‘best’ approach (in terms of 
prediction accuracy) depends on many case- specific factors includ-
ing the length of the time series, the amount of noise present and the 
shape of the attractor, which a priori is unknown. We highlight a few 
features of Simplex, S- map and GP below.

The most widely used models in ecology are the locally constant 
(zeroth order) ‘Simplex’ (Sugihara & May, 1990) and the locally linear 
(first order) ‘S- map’ (Sugihara, 1994). These function approximations 
intentionally have a minimum number of free parameters to reduce 
the possibility of overfitting and aid transparency.

The zeroth- order Simplex is a nearest neighbour forecasting 
method. A major advantage of Simplex is its extreme simplicity: to 
make a prediction from given an initial state, Simplex uses a weighted 
average of the future values of the focal state's nearest neighbours. 
Since the minimum number of points needed to surround the focal 
state in E dimensions is E + 1, Simplex uses E + 1 nearest neighbours, 
eliminating this as a tunable parameter. Indeed, given that τ is typ-
ically set to the sampling interval in ecological applications (τ = 1), 
in practice E is often the only parameter that is fit to data. As such, 
Simplex provides a simple and computationally efficient first pass 
in data exploration to test for the presence of determinism using 
prediction skill for validation.

The first- order S- map is a locally linear least- squares algorithm 
that is applied sequentially to each point on the attractor with 
weights that decay exponentially with Euclidean distance from the 
focal point in delay coordinate space (Sugihara, 1994). Thus, S- map 
contains only one additional free parameter, θ, which controls how 
fast the weights decay. Specifically, for any pair of delay vectors at 
times t and s, the weight is wt,s = exp

[
− �Σi

(
yt−i−ys−i

)2]. Note that 
this is defined over all pairs, not just the E + 1 nearest neighbours. 
When θ = 0, the weights are constant across the whole time series 
(all points have equal weight) so the resulting model is equivalent 
to an autoregressive (AR) model of order E. Critically, the fact that 
the global AR model is a special case of S- map enables a clear test 
of the hypothesis that the dynamics are nonlinear (Sugihara, 1994). 
Applications of this test find evidence that nonlinear dynamics are 
ubiquitous in nature (Anderson et al., 2008; Clark & Luis, 2020; 
Glaser, Fogarty, et al., Glaser, Fogarty, et al., 2014; Hsieh et al., 
2005; Klein et al., 2016; Sugihara et al., 1999). To encourage finding 
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a parsimonious model, ‘regularized’ versions of S- map have been 
developed, though the ideal regularization scheme depends on the 
modelling objective (Cenci et al., 2019).

To relax the rigid minimalism of the zeroth-  and first- order func-
tion approximations, Munch et al. (2017) introduced a Bayesian ap-
proach to EDM based on GP regression (GP- EDM). GP regression 
provides a probabilistic, Bayesian framework for EDM that readily 
incorporates prior information and extends to hierarchical modelling 
(Munch et al., 2017). In GP- EDM, the covariance function (and its 
associated inverse length scales) controls the degree of nonlinearity 
that is analogous to the weighting kernel in S- map. Typical applica-
tions of GP- EDM set Cov

[
G
(
yt
)
,G

(
ys
)]

= �exp
[
− ΣE

i=1
�i

(
yt−i−ys−i

)2] 
though other forms are certainly possible. It is also possible to define 
the GP using Euclidean distance with a single inverse length scale 
parameter (e.g. all �i = �), analogous to use of the single θ parame-
ter in S- map which gives equal weighting in all directions. However, 
greater flexibility is obtained by allowing each input to have its own 
length scale which is particularly useful for optimizing predictability 
with multivariate embedding.

Although the increased flexibility of GP- EDM increases the pos-
sibility of overfitting, this can be substantially minimized through 
Bayesian prior specification. In contrast to frequentist ‘wiggliness 
penalties’ which generally involve an unknown Lagrange multiplier 
that must be determined out of sample, the GP- EDM uses ‘auto-
matic relevance determination’ (ARD) priors (Neal, 1996) to con-
trol the wiggliness of the estimated function. Specifically, Munch 
et al. (2017) set the ARD prior such that— in the absence of data— the 
modal inverse length scale is zero (i.e. the most likely model is flat), 
and the mean inverse length scale is set such that, on average, the 
model will have one local maximum over the range of the data. Thus, 
the prior shrinks the inverse length scales towards 0 for irrelevant 
inputs, effectively removing them from the model. Using ARD re-
sults in parsimonious collections of inputs. In addition, using input- 
specific length scales simplifies extending EDM to multiple types of 
inputs where Euclidean distance is not optimal. This is particularly 
useful in allowing for unequal lag spacing (Munch et al., 2017), such 
as when the dynamics occur on multiple time- scales, for example, 
ŷt+1 = G

[
yt , yt−3, yt−12

]
 for monthly data from a system with strong 

seasonal and annual dynamics.

2.3  |  Evaluating the model

Regardless of the function approximation scheme chosen, some 
measure of model quality/validity is needed. The most widely used 
metrics are related to prediction accuracy, such as the Pearson cor-
relation between predicted and observed values, the mean squared 
prediction error, mean absolute prediction error, or when appropri-
ate, the percentage correct sign (e.g. positive/negative growth rate). 
Because these models are almost entirely data driven, predictions 
must be evaluated ‘out of sample’— an idea introduced to ecology 
in the 1990s (Sugihara & May, 1990). For small datasets and where 
large deviations in the data (steep peaks and deep valleys) are an 

important focus, mean squared error in leave- one- out forecasts is 
commonly applied. When longer time series are available, leaving 
out more of the data or using explicit training and testing datasets 
(e.g. Sugihara & May, 1990) is more robust. When we are interested 
in using EDM to make predictions in real time, it may be more appro-
priate to use sequential updating where the forecast for each year 
depends only on data from earlier in the time series. In this case, pre-
dictions will improve as the training set (library) increases with time 
(Giron- Nava et al., 2017; Johnson et al., 2021; Munch et al., 2017), 
that is, as the attractor becomes denser and nearest neighbour ana-
logues become more similar— a phenomenon known as convergence 
(Sugihara et al., 2012).

Evaluating prediction accuracy over a range of time- scales can 
help differentiate linear from nonlinear dynamics, as scale depen-
dence is an important feature of nonlinearity (Sugihara et al., 1999). 
When sampling intervals are short relative to the system dynamics, 
the series will be highly autocorrelated. Consequently, for one- step 
ahead prediction, the constant predictor will do well, and the ‘best’ 
model will be a linear AR model of low order (S- map with θ = 0). 
With unstable, nonlinear dynamics, prediction accuracy will decay 
exponentially as predictions are made further into the future, and 
in some cases nonlinear models with higher embedding dimensions 
can emerge. Along these lines, ‘trajectory matching’, that is, mini-
mizing the distance between observed and predicted segments, 
rather than single points, improves estimation for nonlinear models 
(Hooker & Ellner, 2015; Shertzer et al., 2002), and Judd et al. (2008) 
have shown that training models using multi- step predictions can 
substantially improve out of sample forecast accuracy.

3  |  E X TENSIONS OF EDM

Many extensions to univariate EDM have been developed that ad-
dress obstacles to practical application in ecology, such as short 
time- series and missing data, and that allow for greater applicability 
and inference when using multivariate data. Here we discuss several 
extensions that open up a wider range of possibilities.

3.1  |  Short time series: Leveraging replicates

Many ecological time series are short relative to the time- scale of 
the system, which presents a major obstacle to the successful ap-
plication of EDM: if the time series does not adequately cover the 
range of possible dynamics and make a sufficient number of ‘cycles’ 
around the attractor, it can be difficult for EDM to make reliable pre-
dictions. Empirical, results for fish suggest that to obtain appreciable 
gains in forecast performance, EDM requires time series spanning 10 
times the maturation age of the focal organism (Munch et al., 2018), 
though shorter time series may still provide useful predictions (e.g. 
Giron- Nava et al., 2017). The maximum estimable embedding dimen-
sion is limited by time- series length, and the use of lags eliminates 
the first Eτ data points as training data, which can be a substantial 
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fraction of short time series. Hence, approaches for making better 
use of short series are critical for ecological applications.

Concatenating delay matrices for time series that share similar 
dynamics is one solution. This includes combining information across 
species with similar dynamics or across spatially replicated series 
for a single species. Hsieh et al. (2008) proposed a scheme for doing 
this designed to limit false- positive assessments of nonlinearity— 
concatenating time series for species with similar dynamics such that 
the fitting set (library) and test set (predicted) are maximally different 
from each other, but internally similar. Here dynamic similarity was 
determined by how well each time series could predict another, later 
referred to as ‘co- prediction’ (Kuriyama et al., 2020; Liu et al., 2012).

Often, replicate time series are collected for multiple populations 
over space. Here, the simplest approach is to assume that all spatial 
replicates have identical dynamics so that delay matrices from each 
spatial replicate can be combined (Glaser, Ye, & Sugihara, 2014). 
Another possibility for leveraging spatially replicated data is to in-
clude lags of neighbouring sites as additional predictors (Johnson 
et al., 2021). Simulations indicate that ‘mixed- lag’ embeddings out-
perform concatenation when there is substantial spatial variation in 
dynamics, but that concatenation is superior when the dynamics are 
spatially uniform (Johnson et al., 2021). The best approach is likely 
to vary with the study system, but all can improve performance with 
short time series.

Another option is to model the dynamics for multiple popula-
tions in a common hierarchical model, as implemented in GP- EDM 
(Munch et al., 2017). This allows for information to be shared across 
populations, but does not require the dynamics to be identical. 
To account for differences, the hierarchical model has one addi-
tional parameter, referred to as the ‘dynamic correlation’ (Rogers & 
Munch, 2020), which estimates the linear similarity between pairs of 
(nonlinear) delay maps. Specifically, for two time series xt and yt, with 
dynamics xt+1 = f

(
xt
)
 and yt+1 = g

(
yt
)
, the dynamic correlation mea-

sures corr
[
f(s), g(s)

]
 over states s, rather than corr

[
xt , yt

]
 over times t. 

Thus, the dynamic correlation provides information on the similarity 
of the dynamics irrespective of whether populations are correlated 
through time. For example, populations with the same underlying 
dynamics (i.e. f ≈ g), but that are out of phase, will have high dynamic 
correlation, but low temporal correlation, particularly when the dy-
namics are chaotic. The dynamic correlation can reveal hidden spa-
tial structure in population dynamics and dynamic similarities among 
populations that are temporally asynchronous. For instance, Rogers 
and Munch et al. (2020) used the dynamic correlation to rule out 
spatial differences in dynamics as a source of asynchrony in a crab 
metapopulation.

Combining data across similar species or spatial replicates can 
be leveraged to obtain better global predictions than would be ob-
tainable using just a single short time series. This requires that the 
delay embedding maps are similar (usually a reasonable assumption 
for populations of the same species) but not strongly synchronized 
(i.e. each series provides some independent information). Combining 
series in this way could facilitate prediction of extreme events like 
population crashes for species or locations whose time series do not 

contain a crash, provided that crashes are found in series with similar 
dynamics.

3.2  |  Missing data, variable step sizes

Most ecological datasets have at least a few missing observations, 
and many long- term sampling programmes have some variability 
in the sampling intervals due to weather, equipment failures, fund-
ing lapses and so on. The recent global pandemic, for instance, in-
terrupted sampling in many long- term monitoring programmes 
(Viglione, 2020).

In a large dataset with only a handful of missing observations, 
ignoring delay vectors containing missing values is of little conse-
quence (Johnson & Munch, 2022) and experience indicates that 
small variations in sampling interval do not cause serious problems 
(McGowan et al., 2017). However, when missing observations are 
more common or steps sizes more variable, some alternative is 
needed. This is particularly relevant in short series since every miss-
ing value results in E missing delay vectors. One obvious solution 
is to interpolate, either to obtain uniform sampling or fill in data 
gaps. However, interpolating can create artefacts and is best when 
restricted to small changes in smoothly varying data (Johnson & 
Munch, 2022).

Variable step size EDM (VS- EDM; Johnson & Munch, 2022) 
circumvents the problems of missing data and variable step sizes 
by expanding the delay vector to include the sampling inter-
val. To provide some intuition for this, recall that the solution for 
an ordinary differential equation (ODE), dx

dt
= f(x), can be written 

as xt+h = F
(
xt , h

)
. Applying this to delay embedding, VS- EDM fits 

y
(
ti
)
= F

[
y(ti−1

)
, ti − ti−1, … , y

(
ti−E

)
, ti−E+1 − ti−E ]. Although this 

expansion of the delay coordinates can be implemented with any 
function approximation scheme (Simplex, S- Map, etc.), this solu-
tion doubles the dimension of the input space, so some regular-
ization is warranted. Using GP- EDM with ARD priors, Johnson and 
Munch (2022) showed that VS- EDM substantially outperforms 
standard interpolation and dropping missing data, particularly when 
time series are relatively short. Importantly, when the step sizes are 
fixed, ARD eliminates dependence on the time interval (Johnson & 
Munch, 2022). Multi- step- ahead forecasts can be generated directly 
from the resulting model by varying the sampling interval.

3.3  |  Multivariate embeddings

Univariate delay embedding based on Takens theorem can provide 
basic information on predictability, nonlinearity and determin-
ism, but the resulting delay embedding map is difficult to interpret 
mechanistically. However, if data on other state variables or relevant 
covariates are available, multivariate EDM reconstructions that are 
ecologically relevant can be used directly to explore mechanism. 
Deyle and Sugihara (2011) opened this path formally by provid-
ing generalizations of Takens' theorem to multivariate embeddings 



6  |   Methods in Ecology and Evoluon MUNCH et al.

that justify mixed lag, multi- variable models where the lags do not 
have to be fixed or consecutive. Earlier extensions of Takens' the-
orem to driven systems (e.g. by environmental or stochastic driv-
ers) justify the inclusion of external drivers as additional covariates 
(Stark, 1999; Stark et al., 1997). Dixon et al. (1999) provided the first 
ecological example of a mechanistic multivariate embedding using 
trial and error forecasting with physical drivers to understand spikes 
in reef fish spawning.

Multivariate models can potentially improve performance and 
provide more information about the underlying system dynamics 
and relationships among variables. In particular, they can provide 
more interpretable information on time- dependent interactions with 
other state variables (e.g. predators, competitors or abiotic drivers). 
As with univariate models, lags of multiple variables can be used to 
compensate for any remaining unobserved deterministic variables, 
for example, x1,t = F

[
x1,t−1, x1,t−2 … , x2,t−1, x2,t−2, …

]
. Conversely, de-

pendence on lagged values can indicate that relevant state variables 
are missing. In addition, when a key driver is essentially stochastic, a 
univariate reconstruction may yield poor predictions. For example, 
McGowan et al (2016) found that explicitly including stochastic en-
vironmental drivers that were determined to be causal (and whose 
effects propagated with a time lag detectable with the prediction 
horizon), improved prediction of red tides well beyond that attain-
able with lags of the target variable, chlA, alone.

Practical implementations of multivariate embeddings using 
Simplex or S- map typically normalize the values of each time series 
to have 0- mean and unit variance, effectively giving each coordinate 
of the embedding equal weight/relevance. This has proven to be ef-
fective but can be relaxed in GP- EDM by assigning each coordinate 
its own length scale, permitting the ARD to determine the relevance 
of different inputs.

Before we discuss multivariate embeddings as a route to mech-
anistic understanding of ecological dynamics, we first address some 
of the more counter- intuitive implications of the multivariate em-
bedding theorems.

3.4  |  Information leverage with multiview

Multivariate embeddings can be highly advantageous when time 
series are short, since many different combinations of variables 
and their lags can be used to reconstruct the attractor (Deyle & 
Sugihara, 2011). Since each of these reconstructions provides a dif-
ferent view of the underlying dynamical system, there is enormous 
potential for leveraging information from multiple data streams. In 
fact, the number of possible reconstructions grows combinatorially 
(Ye & Sugihara, 2016): Given l  lags for each of n variables, the number 

of E- dimensional variable combinations is 
m =

⎛⎜⎜⎝
nl

E

⎞⎟⎟⎠
−

⎛⎜⎜⎝
n(l−1)

E

⎞⎟⎟⎠. 
For example, the number of distinct three- dimensional combinations 
(three- dimensional embeddings) for a system with up to 3 lags of 10 
variables is nearly 3000.

Ye and Sugihara (2016) introduced ‘multiview’ embedding to 
take advantage of this and showed that multiple short time series 
can produce very good forecasts even in high- dimensional systems. 
Some promising recent implementations of this idea for improving 
forecasts are the random embeddings discussed by Ma et al. (2018) 
or using state- dependent weightings to improve forecasts (Okuno 
et al., 2019). This approach leverages the fact that although there 
are many theoretically equivalent embeddings, they each stretch 
or shrink the attractor differently in different regions of the state 
space, meaning that some may produce better forecasts than others 
in different regions.

Although multiview leverages the multiplicity of possi-
ble reconstructions to improve forecasts, many— if not most— 
are difficult to interpret mechanistically. Moreover, under the 
multivariate embedding theorem, the idea of identifying a 
uniquely ‘best’ model that is the mechanistic representation of 
the system no longer makes sense. As a simple example, con-
sider a two species model in which xt+1 = rxt

(
1 − xt

)
− xtyt and 

yt+1 = cxtyt − myt. This system can be rearranged to find that 
xt+1 = rxt

(
1 − xt

)
− xt

(
cxt−1 − m

)[
r
(
1 − xt−1

)
− xt ∕xt−1

]
. Since these 

two representations are algebraically equivalent, estimating maps of 
the form xt+1 = F1

[
xt , xt−1

]
 and xt+1 = F2

[
xt , yt

]
 should lead to statisti-

cally indistinguishable fits to time series. However, the nonlinearity 
in the delay embedding map is more severe (containing terms like 
xt ∕xt−1 which blow up as xt−1 → 0) compared to the original system 
which is much smoother, containing only linear and bilinear terms. 
As a consequence of increased nonlinearity, we expect convergence 
of the delay map to be slower than the equivalent dynamics in na-
tive coordinates. This is particularly important in stochastic systems 
where the delay map includes the noise sequence implying that 
causal drivers in native coordinates contain more information than 
delay coordinates.

As the dimensionality increases and more series are available, 
the model selection problem becomes more difficult, as there could 
be potentially thousands of multivariate embeddings with equiva-
lent, or near equivalent, fits. In these cases, we clearly need some 
other means of identifying mechanistically relevant predictors (the 
causal drivers of the focal variable— what May (2020) called the ‘ac-
tive variables’).

3.5  |  Causality

Identifying causal variables and their linkages is central to all of sci-
ence. The variety of different methods proposed to assess causal-
ity from observational (as opposed to experimental) data reflect 
fundamentally different views of the underlying system (e.g. linear 
stochastic vs. nonlinear deterministic or some combination), with 
each approach being more or less suitable for different problems 
and domains (e.g. see review by Runge et al. (2019)). Approaches 
that rely on correlation to identify causal links can have difficulty 
with nonlinear dynamic systems where, contrary to popular belief, 
causally coupled causal variables can show no long- term correlation 
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with each other, or have correlations that spontaneously switch sign 
(mirage correlation Sugihara et al., 2012). These phenomena make 
studying causality in ecological systems more difficult.

Regardless of whether conditional mutual information, predic-
tion accuracy or some other metric (M) is used, most approaches 
are based on some form Granger causality (Granger, 1986), which 
involves comparing M(X|Y,Z) and M(X|Z) to determine whether Y 
causes X. Obviously, this fails if Z contains the same information as 
Y. But in dynamical systems where Takens' theorem applies, if Z con-
tains lags of X (or other variables) that are sufficient to reconstruct 
the attractor, why should we need Y at all? As an example, consider 
the two species model from the previous section and let Z =

{
xt , xt−1

}
 

and Y = yt. All of the relevant information in Y is already contained 
in Z, so no causal relationship between Y and X would be found. 
However, in stochastic systems, where the rigorous delay coordinate 
map must include the noise history (Stark et al., 1997), contempora-
neous values of Y contain more information than lagged values of 
X and we can expect M(xt+1

||xt , yt
)
> M(xt+1

||xt , xt−1
)
. Indeed, in the 

original exposition of Granger causality involving co- integration, the 
prescient disclaimer was made that ‘this may not apply to dynamic 
systems’.

Convergent cross- mapping (CCM; Sugihara et al., 2012) provides 
a solution to these problems. Since the delay coordinates for each 
observed variable form a one- to- one projection of the whole attrac-
tor, observables from the same system should produce one- to- one 
projections of each other as well; that is, coordinates contain infor-
mation about each other. Hence, if Y causes X, we should be able 
to reconstruct Y using the delay coordinates for X. This procedure, 
known as cross- mapping, uses the affected target to estimate con-
temporaneous states of the proposed causal driver. Unidirectional 
and bidirectional causal effects can be identified: if Y causes X, but 
X does not cause Y, delays of X will predict Y, but delays of Y will 
not predict X. That is, the direction of causation is opposite to the 
direction of cross- mapping (Cummins et al., 2015). If causality is bi-
directional, predictability will be present in both directions. This pro-
cedure works well in systems with weak to moderate coupling where 
the variables are not synchronized. When variables are strongly 
coupled (e.g. they are synchronized), CCM will indicate bidirectional 
causation regardless of which variable drives the other, a case ex-
plicitly excluded from the original exposition (Sugihara et al., 2012). 
Ye et al. (2015) extend CCM to cover this case by cross- mapping 
with lags: using delay coordinates of X to predict values of Y before 
and after contemporaneous states, and noting that effects can never 
precede causes (though synchronization may still be problematic). 
Cross- mapping with lags can also help reveal causal effects on mixed 
timescales (Saberski et al., 2021).

Because causality is transitive, CCM is not able to differentiate 
direct and indirect causality unless there are detectable time lags 
in causal effect (Ye et al., 2015). However, if data are available for 
potential intermediate variables, relative cross- map strength can 
in principle help distinguish between direct and indirect coupling. 
In cases where two interacting variables are forced by a common 
external variable, such as with seasonal forcing, convergence is 

generally not observed beyond cross- correlation. However when 
cross- mapping and cross- correlation are strong and convergence 
is ambiguous, the use of null surrogates based on seasonality can 
be used to distinguish cross- map skill that goes beyond the shared 
seasonal signal (Deyle, Maher, et al., 2016; Sugihara et al., 2017). 
Alternatively, Leng et al. (2020) propose extending the classical no-
tion of partial correlations to CCM, involving ‘partial CCM’ scores.

As with other EDM approaches, we can concatenate delay matri-
ces from spatially replicated series (e.g. experimental plots) to obtain 
more robust CCM results from short time series (Glaser, Fogarty, 
et al., 2014). Multispatial CCM involves drawing bootstrapped sam-
ples from the pool of all spatially replicated observations and uses 
samples weighted by their dynamic similarity to estimate expected 
dynamics (Clark et al., 2015).

3.6  |  S- map coefficients and interaction strength

Given a collection of causally interacting variables (determined via 
CCM or through biological observation), it may be possible to infer 
how their interaction strength varies with the state of the system. 
The coefficients of the S- map model have been shown to provide 
an interpretable measure of state- dependent interactions (Deyle, 
May, et al., 2016). Assume that the dynamics in the native coordi-
nate space are given by xt+1 = F

[
xt
]
 where xt =

{
x1,t , … , xn,t

}
. Then 

in the neighbourhood of a focal point x∗ on the attractor, the dy-
namics may be approximated as xt+1 = F[x∗] + J

∗
(
xt − x∗

)
 where the 

Jacobian matrix J∗ is given by Ji,j = �Fi ∕�xj evaluated at x∗. Since each 
Ji,j indicates how much xi,t+1 will change for a unit change in xj,t, it 
can be interpreted as a measure of interaction strength. Importantly, 
the regression coefficients obtained by fitting a set of local linear 
models provide estimates of the Ji,j's and can be used to empirically 
estimate interaction strengths and how they vary with the state of 
the system (Deyle, May, et al., 2016). Methods for quantifying uncer-
tainty in interaction strength parameters have been proposed using 
ensembles of regularized S- map models (Cenci & Saavedra, 2018).

It is worth considering the parallel between the Jacobian interac-
tion coefficients mentioned here and the coefficients of the classi-
cal community matrix. Here, we define the community matrix as the 
Jacobian that arises from a first- order Taylor approximation of the 
full system, evaluated at equilibrium (May, 1972), that is, Ji,j = �Fi ∕�xj 
evaluated at x∗. The result is a matrix of constant interaction coef-
ficients. Ives et al. (2003) proposed using vector autoregression 
(VAR/MAR) to estimate a per capita community matrix assuming lin-
ear dynamics around a single equilibrium point. The S- map Jacobian 
(Sugihara, 1994), however, is computed sequentially at each point as 
the system travels along its attractor and provides information on 
how interactions change with system state, that is, Ji,j(t) = �Fi ∕�xj 
evaluated at xt. Thus, in contrast to the equilibrium case, S- map 
coefficients depend on the global model structure realized in the 
attractor (Song & Saavedra, 2021). The coefficients represent net 
interactions integrated over the course of a time step so that with 
short time steps they will closely match expected instantaneous 
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interactions (Deyle, May, et al., 2016), noting that coefficients esti-
mated on larger time steps can encompass indirect effects and un-
observed variables in addition to direct effects (Rogers et al., 2020).

The idea of estimating sequential Jacobians can appear su-
perficially similar to dynamic linear models (DLM; e.g. Lamon III 
et al., 1998) in that both are derived from local linear approxima-
tions. However, S- map and DLM make very different assumptions. In 
a DLM, parameters vary such that points nearby in time have similar 
parameters. In S- map, parameters vary such that points ‘nearby on 
the attractor’ (similar states which may be far apart in time) have 
similar parameters. Thus, with linear dynamics or with extreme 
oversampling where local coefficients change slowly relative to the 
sampling rate, DLM can give results similar to S- map. However, with 
nonlinear dynamics where states change across successive samples, 
S- map provides vastly better estimates of the Jacobian coefficients 
than DLM (fig. 2 in Deyle, May, et al., 2016).

It is important to keep in mind that many combinations of state 
variables and lags are theoretically equivalent embeddings, and the 
sequence of values obtained for S- map coefficients depends on the 
embedding used. So, although the interpretation of S- map coeffi-
cients as interaction strengths is sound, it is conditional on the em-
bedding chosen. In light of this, we suggest evaluating the sensitivity 
of any specific interaction coefficient to the choice of embedding. 
This can be done exhaustively, through a random projection proce-
dure (Ma et al., 2018), or some other ensemble method (e.g. Cenci 
& Saavedra, 2018). Consistent results across a range of embeddings 
point towards the robustness of the interpretation. Another approach 
suggested by Chang et al. (2021) is the ‘multiview distance regularized 
S- map’, which combines CCM, multiview embedding and regularized 
S- map to provide better estimates of interaction strengths in high- 
dimensional systems. This procedure has two steps: (1) using CCM to 
identify a set of causally coupled variables, potentially reducing the 
number of inputs to S- map and (2) estimating S- map coefficients with 
weights determined by the multiview distance metric rather than 
standard Euclidean distance. The authors also employed the elastic 
net (Cenci et al., 2019) to shrink the S- map coefficients towards 0. 
This approach produced striking improvements in estimating coeffi-
cients for large systems (Chang et al., 2021).

3.7  |  Stability and early warning signals

Ecologists have long used the Jacobian matrix to evaluate stabil-
ity of fixed points in theoretical studies (Allesina & Tang, 2015; 
May, 1974). Classical stability analysis uses eigenvalues to charac-
terize the long- run growth of a perturbation (May, 1974), while sin-
gular values (e.g. ‘reactivity’; Caswell & Neubert, 2005) describe the 
initial growth of a perturbation. Similarly, if xt+1 = F

[
xt
]
, then a small 

change in state, say from xt to xt + Δt will be propagated to the next 
step as Δt+1 = JtΔt where Jt is the Jacobian evaluated at xt. Similarly, 
structural stability, say st, that is, sensitivity of the future state to a 
small change in a parameter q, is also driven by the Jacobian. That is, 
if st = �xt ∕�q, then st+1 = Jtst + �F

(
xt
)
∕�q.

The S- map coefficients (from either a univariate or multivariate 
embedding) provide estimates of the Jacobian elements at each point 
in the time series. In light of this, it should be possible to characterize 
state- dependent variation in stability using EDM. Specifically, given a 
sequence of Jacobians, a corresponding sequence of eigenvalues (e.g. 
Ushio et al., 2018), singular values, trace (Cenci & Saavedra, 2019) or 
other metrics can be calculated to provide a state- dependent charac-
terization of stability. These estimates describe local contraction or 
divergence of trajectories in state space and can provide information 
on local predictability (Guégan & Leroux, 2009) and local susceptibil-
ity to perturbations (Abarbanel et al., 1992).

An interesting implementation of this idea is provided by Rypdal 
and Sugihara (2019), who modelled dengue fever outbreaks. The at-
tractor was found to collapse seasonally to a fixed point during inter- 
outbreak periods, and was modelled in two parts (an outbreak period 
with E = 9 and inter- outbreak period with E = 3). A local eigenvalue 
could identify the initiation of an ensuing outbreak and estimate its 
magnitude, thus providing an early warning signal. The stability of 
the inter- outbreak period was shown to be a proxy for the size of the 
otherwise unmeasurable susceptible population. Subsequent mod-
els using this susceptibility measure and incorporating CCM- derived 
climatic drivers (Nova et al., 2021) have surpassed the best models in 
the Dengue Forecasting Challenge.

Local Lyapunov exponents, which evaluate stability within finite 
time segments (Abarbanel et al., 1992; Benincà et al., 2015; Ellner & 
Turchin, 1995), are a natural extension of stability at individual time 
points. The Jacobian for a segment is the product of step- specific 
Jacobians. In the long- time limit, the eigenvalues converge to the 
global Lyapunov exponent, which is an indicator of chaotic dynamics. 
Lyapunov exponents computed over long but finite empirical time 
series have been called ‘effective Lyapunov exponents’ (Grassberger 
et al., 1988), and give an indication of stable/unstable dynamics over 
the period of observation. Significantly, Rogers et al. (2022) found that 
effective Lyapunov exponents computed from S- map Jacobians can 
identify chaotic dynamics in simulated data from a variety of models, 
and when applied to ecological time series from the Global Population 
Dynamics Database chaotic dynamics were found to be common.

Local Lyapunov exponents are straightforward to calculate, 
whereas precise estimates of global Lyapunov exponents are chal-
lenging to obtain, particularly for systems with strong intermittency 
and noise. We note however that unlike global Lyapunov exponents, 
which are typically independent of the initial state and are ‘metric 
invariant’ (i.e. they are unchanged by a change in coordinates), the 
values of local Lyapunov exponents depend, often heavily, on the 
initial state, direction of the perturbation and coordinate system in 
which they are measured (see e.g. Chang et al., 2021). Thus, when 
using lags as surrogate coordinates, care should be taken in the in-
terpretation of local Lyapunov exponents. As with the interpretation 
of interaction strength, we suggest evaluating the robustness of the 
exponent to variation in choice of embedding.

Cenci and Saavedra (2019) and Cenci et al. (2020) note that the 
sensitivity of estimated S- map coefficients to noise leads to negative 
bias in the estimation of the dominant eigenvalue, analogous to earlier 
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results on estimating Lyapunov exponents (Kendall, 2001). They show 
that the volume contraction rate (VCR), given by the trace of the 
Jacobian in continuous time (or the log of the determinant over a dis-
crete time step), is more robust to noise for a range of simulation mod-
els and propose the VCR as a data- driven index of structural stability.

3.8  |  Scenario exploration

Because EDM produces an empirically driven discrete time model 
for the system, the estimated map can be used as we might any other 
parameterized model. For instance, it can be used to make predic-
tions, identify equilibria, evaluate parameter sensitivity, evaluate 
various ‘what- if’ scenarios or test and optimize policies. For instance, 
when we build EDM models that include lags of an environmental 
driver and abundance, for example, xt = f

(
xt−1, Tt−1

)
, we can deter-

mine the functional dependence on x (or T) by perturbing the time 
series and evaluating the response (Deyle et al., 2013, 2022; Deyle, 
Maher, et al., 2016; McGowan et al., 2017). Doing so more generally 
with multiple drivers, for example, xt = f

(
xt−1, Tt−1,Ht−1

)
 can eluci-

date mechanisms that explain seemingly contradictory effects when 
viewing drivers one at a time; for example, the effect of absolute 
humidity on global flu incidence flips sign at a threshold tempera-
ture (Deyle, Maher, et al., 2016). In fisheries, scenario exploration 
could be used to advise ecosystem- based management with EDM 
‘experiments’ that account for changing climatic drivers and differ-
ent harvest policies. Taking this a step further, EDMs can be used to 
explore how spatial autocorrelation changes under different (hypo-
thetical) environmental regimes to test hypotheses about sources 
of asynchrony (Rogers & Munch, 2020). By numerically evaluating 
f(x, T) over a grid of x and T (Rogers & Munch, 2020), EDM can also 
suggest reasonable shapes for parametric approximations.

The starting point for many theoretical studies is to find the steady 
states and evaluate their stability. Though somewhat at odds with 
the dynamical philosophy underlying EDM, it is possible to do so, and 
the result is an equation- free estimate of the steady- state or feasible 
limit cycles. Specifically, say we have used EDM to extract a model g. 
xt = f

(
xt−1, xt−2

)
 from the available time series. As with any parametric 

model, the steady state, x∗, satisfies x∗ = f(x∗, x∗). Plausible values of x∗ 
can be obtained numerically (Munch et al., 2017). In cases where there 
is no steady state within the range of the data, the posterior probability 
for x∗ will be nearly flat. This can be extended to models with external 
drivers, for example, temperature or harvesting. For example, if catch of 
species x is Ct and xt = f

(
xt−1,Ct−1

)
, the estimated steady state, x∗(C) = 

f(x∗,C) is a function of C, which can be used to highlight average impacts 
of harvesting on the focal population (Giron- Nava et al., 2021).

3.9  |  Hybrid models for predicting and 
managing non- analogue futures

In cases where there are acceptable physical models for extrinsic 
forcing variables, but where the underlying biology is unresolved, 

it may be possible to construct a hybrid model that provides sig-
nificantly better predictions and mechanistic insights for environ-
mental management (McGowan et al., 2017). For example, Deyle 
et al. (2022) applied this idea to understand the apparent irrevers-
ibility of eutrophication in Lake Geneva, where deep oxygen levels 
remain low despite having achieved fully remediated phosphorus 
levels. They used a physical model (Simstrat; Gaudard et al., 2019; 
Schwefel et al., 2016) based on climatic inputs (air temperature) to 
predict lake turnover, and included this as an additional driver to an 
EDM for the biological component. The resulting hybrid gives sub-
stantially better predictions and provides an actionable description 
of the emergent processes (biogeochemical, ecological, etc.) that 
drive water quality. For example, the hybrid model warns that an 
increase in air temperature of 3°C will have the same effect on water 
quality as eutrophication in the previous century, and that because 
of nonlinearities, effective management controls can change as the 
lake state changes so that reducing phosphorus inputs alone may 
no longer be sufficient. Models with demonstrated skill in out- of- 
sample prediction, that allow us to explore non- stationary, non- 
analogue futures, address a signature challenge for 21st- century 
environmental management.

3.10  |  Optimal control for conservation and  
management

Optimal control theory and Markov decision processes are applied 
in many branches of ecology to derive conservation and manage-
ment plans. Doing so requires us to divide the inputs to our dynami-
cal model into ‘state’ and ‘control’ variables and to define a ‘reward,’ 
that is, the target to be optimized. State variables are typically some 
measure of the population or ecosystem, and the controls are indi-
ces measuring human interventions, such as harvest rates, protected 
areas, nutrient loads, etc. In a conservation context, the reward can 
be the size of the breeding population, or some measure of extinc-
tion risk. In harvesting problems, the reward is often the catch or 
profit extracted from the system. Given these, and a model for the 
system dynamics, an optimal policy can be derived using dynamic 
programming (Mangel & Clark, 1989), Pontryagin's maximum princi-
ple (Schaffer, 1983), reinforcement learning or other tools (e.g. linear 
programming; Hernández- Hernández et al., 1996).

In light of this, the first step to using EDM to derive an op-
timal policy is to estimate a delay embedding map that includes 
both the state xt and control ut from the available time series, that 
is, xt = f

(
xt−1, ut−1

)
. The second step is to characterize the cumula-

tive reward (or penalty) that is to be maximized (or minimized), say 
R
(
xt , ut

)
. An optimal policy is a recipe for determining ut given xt that 

maximizes V =
∑T

t=0
� tR

�
xt , ut

�
 where �( ≤ 1) is the discount rate.

Boettiger et al. (2015) introduced the idea of coupling opti-
mal control to a nonparametric model of population dynamics, re-
stricted to one- dimensional state spaces. More recently, Brias and 
Munch (2021) expanded this framework to constructing policies for 
larger state spaces as well as several competing objectives. They 
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found that the approximate policies obtained using reinforcement 
learning (Sutton & Barto, 2018) were similar to those obtained with 
dynamic programming, but scale much better with the input dimen-
sion. In both cases, performance is generally close to optimal and 
typically much better than the policy obtained using incorrectly 
specified parametric models.

3.11  |  Software extensions for implementing EDM

Until recently, the greatest barrier to implementing EDM other 
than data constraints has been the accessibility of reliable soft-
ware. This is quickly changing, and a variety software packages 
have emerged, most with tutorials, that include many of the tools 
and recent extensions described here. For example, C++ EDM (Park 
& Sugihara, 2020) is the computational core behind the popular R 
package rEDM (Park et al., 2021; Ye et al., 2019) and the even more 
popular Python package pyEDM (SugiharaLab, 2021), which imple-
ment Simplex, S- map, CCM and GP- EDM with a single length scale 
parameter. Implementations of GP- EDM with separable length scale 
parameters, ARD priors, hierarchical structures and variable step 
sizes (VS- EDM) are available in the R package GPEDM (Munch & 
Rogers, 2022). There are also EDM resources in Stata (Li et al., 2021) 
and an efficient KEDM algorithm in Kokkos (Takahashi et al., 2021) 
optimized to run massive factorial CCM calculations on very large 
databases (100 k time series each with 10 k time points). Specialized 
visualization tools for S- map coefficient exploration are also becom-
ing available (Natsukawa et al., 2021).

4  |  CONCLUSIONS AND FUTURE 
DIREC TIONS

The number of datasets, tools for analysis and range of questions 
that can be addressed with EDM have expanded dramatically since 
Takens introduced time- delay embedding in 1981. These range 
from methods for handling short time- series and missing data, to 
the causal analysis of multivariate time series, to management ap-
plications. We have seen that the multivariate embedding theorems 
provide a formal justification for expanding EDM to multiple data 
streams. This results in an explosion of plausible input vectors that 
can be leveraged to improve prediction using multiview embedding. 
However, since many combinations are theoretically equivalent, ex-
tracting a unique mechanistic representation by finding the best fit 
becomes meaningless. CCM can help address this by using univari-
ate embeddings to identify causally coupled variables. Given a set of 
causally coupled variables, we can then apply EDM to address many 
of the same tasks we typically reserve for parametric models, for ex-
ample, calculating interaction strengths, computing local Lyapunov 
exponents, evaluating what- if scenarios, finding equilibria and evalu-
ating their stability, and computing optimal control policies.

Nevertheless, there are still many interesting areas for fur-
ther method development and applications of EDM. For instance, 

long- term changes in dynamics, or ‘non- stationarity,’ are increasingly 
important in light of global climate change. Although attractor re-
construction applies formally only to stationary systems, there are 
extensions of EDM that can deal with non- stationarity. At its sim-
plest, EDM can provide an equation- free test for non- stationarity by 
evaluating prediction accuracy across libraries constructed from dif-
ferent time periods (Schreiber, 1997) or different modes of dynamic 
behaviour (Lorimer et al., 2021)— in effect, for anomaly detection. 
When the relevant environmental drivers are known, incorporating 
these into the embedding may be sufficient for prediction in non- 
stationary systems (e.g. Deyle et al., 2013), and longer- term ensem-
ble forecasts may be possible by combining physical models with 
EDM (Deyle et al., 2022). When the relevant drivers are unknown, 
slow changes can be accommodated by overembedding (Hegger 
et al., 2000). When the unknown drivers change more rapidly, 
forgetting the past may be more appropriate (Munch et al., 2017). 
Ecological applications of EDM to non- stationary systems (or ex-
plicitly test for non- stationarity in systems) are rare so far, but are 
clearly an important avenue for future work.

Over the past decade, several methods for anticipating regime 
shifts have been developed, most based on the idea of critical slow-
ing down (Scheffer et al., 2012). Although these tools provide robust 
indicators of impending bifurcations in a range of scenarios, they do 
not, as yet, provide information on what to expect following a critical 
transition. On the other hand, Säterberg and McCann (2021) have 
recently shown that applying EDM to the same system in different 
regimes produced measurably different attractors. These results 
suggest EDM could be used to expand the early warning signals 
toolbox and allow us to determine more precisely how dynamics will 
differ following a critical transition (e.g. Dakos et al., 2017).

One of the great strengths mechanistic models is that auxiliary 
information on parameters, sub- models, etc. can be readily incorpo-
rated into model formulation. Extending the EDM toolbox to make 
use of mechanistic information (beyond that contained in the avail-
able time series) is an important area for future development. When 
there is a clear separation in state, say between environmental forc-
ing and biological responses, hybrid models can be used to incorpo-
rate mechanism (Deyle et al., 2022). Residual delay maps (Sugihara 
et al., 1999) and the use of mechanistic models as a priors in Bayesian 
EDM (Thorson et al., 2014) also provide routes to building in mech-
anism. More generally, the recursive structure for accounting for 
missing state variables proposed by Bhat and Munch (2022) pro-
vides another path to constructing partially specified EDM models. 
However, much more work is needed both in determining new ways 
to incorporate static observations and in evaluating the relative 
value of this information.

Finally, a completely novel application of EDM is in the realm of 
simulation, as opposed to prediction. For instance, generative man-
ifold network (GMN) algorithms (Pao et al., 2021), originally devel-
oped for neuroscience, are hypothesized to be useful for simulating 
almost any complex dynamical network. Each node of the GMN is 
an empirical embedding built using a variant of CCM. It uses con-
cepts from manifold learning, dimensionality reduction, and reservoir 
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computing to generate one- step- ahead predictions recursively— each 
prediction becomes the added last value, that is then used to predict 
the next value. Using neural activity data, Pao et al. (2021) showed 
that the GMN is capable of producing novel behaviours not included 
in the training set but observed in out- of- sample data, suggesting that 
in this case, GMN can be used to explore emergent properties of the 
system not explicitly present in the training set. Whether this setup 
generalizes to ecological data simulation remains to be seen.

In conclusion, we see that EDM, its extensions and future de-
velopments can be useful for the exploration and prediction of in-
creasingly available ecological data. By embracing the complexity 
and high dimensionality of natural ecosystems and making minimal 
assumptions, EDM offers a valuable alternative to parametric mod-
elling approaches with potential for many management applications 
that are only just beginning to be explored.
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